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Abstract. The dynamics of minority games with agents trading on different time scales is studied via dy-
namical mean-field theory. We analyze the case where the agents’ decision-making process is deterministic
and its stochastic generalization with finite heterogeneous learning rates. In each case, we characterize the
macroscopic properties of the steady states resulting from different frequency and learning rate distribu-
tions and calculate the corresponding phase diagrams. Finally, the different roles played by regular and
occasional traders, as well as their impact on the system’s global efficiency, are discussed.

PACS. 87.23.Ge Dynamics of social systems – 05.65.+b Self-organized systems – 02.50.Le Decision theory
and game theory – 05.10.Gg Stochastic analysis methods

1 Introduction

The collective phenomena that characterize the evolution
of competitive populations of adaptive agents, such as the
onset of cooperation or the creation of exploitable infor-
mation, have attracted a great deal of attention from sta-
tistical physicists over the past few years. The hope is that
the occurrence of such macroscopic effects can be under-
stood starting from the laws that govern the behavior of
the individual agents. Thanks to the basic simplicity of
its definition, the minority game (MG) [1,2] allows a full
theoretical analysis of many of these issues. Originally, it
was designed to mimic a market of speculators subject to
the law of supply and demand. At each time step, traders
react to the receipt of a public information pattern (the
‘state of the world’) by either buying or selling, trying
to profit from price fluctuations to maximize their payoff,
and learning from experience. Upon decreasing the rel-
ative number α of possible information patterns, the de-
gree of cooperation in the system, measured by the inverse
magnitude of global fluctuations, increases, until a criti-
cal point αc is reached, below which highly cooperative as
well as highly uncooperative states can occur, depending
on the initial conditions of the agents’ learning processes.
Remarkably, the low α phase is characterized by the ab-
sence of exploitable information, while in the high α phase
the market is to some degree predictable and hence inef-
ficient.

On the technical level, the MG is defined by a set of
globally coupled zero-temperature Markov processes with
quenched disorder and without detailed balance. The sys-
tem at αc undergoes a dynamical phase transition with
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ergodicity breaking, related to the onset of anomalous re-
sponse. The stationary state is solvable, at least in the er-
godic phase, via both static (replica) and dynamical meth-
ods, so that a very deep understanding of its macroscopic
properties is achievable. Moreover, the MG is open to a
large class of economically- and biologically-inspired ex-
tensions, that allow to tackle such key issues as the inter-
play of different types of traders in a market [2].

An interesting modification of the original model is ob-
tained when synchronicity is removed, and one accounts
for the possibility that agents trade on different time
scales. This is the ‘colored’ minority game (CMG) first
introduced in [3]. Assuming a power-law distribution of
trading frequencies and using the static approach of [4,5],
it was shown that, while the phase transition picture is
substantially preserved, the actual critical point αc de-
pends on the particular exponent entering the power law.
Furthermore, regular and occasional traders were shown
to take markedly different behaviors, with the latter less
prone to change trading strategy and hence contributing
significantly less to the growth of global fluctuations. MGs
with a fluctuating number of agents have received much
attention as embryonic models of markets (see e.g. [6–11]).
In particular, it has become clear that the grand-canonical
setting is able to reproduce to some degree the statistical
regularities (‘stylized facts’) empirically observed in real
markets. CMGs, on the other hand, have been only par-
tially investigated so far.

In this work, we adapt the generating functional meth-
ods originally devised for spin glasses [12–16] and already
employed in the theory of MGs [17–21] to study the dy-
namics of the CMG in a few different cases. First, as-
suming that the agents’ learning process is deterministic,
we derive a stochastic equation describing the behavior
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of an effective agent trading with frequency f (Sect. 2).
Global dynamical quantities such as correlation and re-
sponse functions appear as proper averages over the trad-
ing frequency distribution q(f). We calculate the phase
diagrams exactly and evaluate macroscopic order param-
eters in ergodic stationary states explicitly in the simple
case where q(f) is bimodal (i.e. for a mixed population
of frequent and occasional traders, with a wide separation
of time scales between the former and the latter, Sect. 3)
and when it has a power-law form (i.e. when there is no
single characteristic time scale for trading, Sect. 4). The
roles of regulars and irregulars can be thoroughly inves-
tigated. Then (Sect. 5), we move to the case where the
agents’ learning process is stochastic by introducing dif-
ferent learning rates as a further element of heterogeneity
among agents (besides their strategies and trading fre-
quencies). We analyze additive and multiplicative decision
noise (Sect. 6), deriving the corresponding phase structure
as a function of the learning rates. Finally, we summarize
our results and formulate our conclusions (Sect. 7). In or-
der to keep the treatment concise, we will not report the
full generating functional analysis and limit ourselves to a
study of the resulting effective mean-field equations. The
reader is from this moment referred to [17,19] for all de-
tails about its derivation in similar instances.

2 CMG with deterministic decision-making

The basic ingredients of the MG are as follows. There are
N agents. At each round n of the game all agents receive
the same information pattern µ(n) drawn at random with
uniform probability from a set of P possible. P is assumed
to scale linearly with N , so that in the limit N → ∞ the
parameter α = P/N (the relative number of information
patterns) remains finite. We assume that each agent is en-
dowed with two different strategies (labeled by g = 1, 2)
to convert the information into a ternary trading decision:
aig : {1, . . . , P} 3 µ → aµig ∈ {−1, 0, 1}. aµig is the action
prescribed to agent i by his g-th strategy upon receipt of
information µ. One might think that aµig = ±1 correspond
to ‘buy’ and ‘sell’, respectively, while aµig = 0 stands for
‘do nothing’. For all i, g and µ, each aµig is selected ran-
domly and independently from {−1, 0, 1} before the start
of the game and fixed. Following [3], we take a probability
distribution of the form

P (aµig) =
fi
2

δaµ
ig,1

+
fi
2

δaµ
ig,−1 + (1− fi)δaµ

ig,0
. (1)

The numbers fi (0 ≤ fi ≤ 1) represent the trading fre-
quencies of agents. They can be seen as an additional fam-
ily of i.i.d. quenched random variables with a prescribed
probability density which we denote by q(f). In the orig-
inal MG, where all agents trade at all rounds, one has
q(f) = δ(f − 1).

The system’s dynamics is defined through the micro-
scopic stochastic equations that govern the decision mak-
ing of the individual traders. Each strategy of every agent
is given an initial valuation pig(0), which is updated at the

end of every round. Loosely speaking, pig(n) measures the
performance of g up to round n. At the beginning of round
n, every trader selects his so-far best-performing strategy,
g̃i(n) = arg max pig(n), and formulates a bid according
to the trading decision it prescribes: bi(n) = a

µ(n)
ig̃i(n). The

total bid (or, the excess demand) at round n is simply
A(n) = (1/

√
N)

∑N
i=1 bi(n). Once A(n) is known, strat-

egy valuations are updated according to

pig(n + 1) = pig(n)− a
µ(n)
ig A(n) (2)

and agents move to the next round. Strategies that would
have prescribed the minority (resp. majority) action, i.e.
such that a

µ(n)
ig A(n) < 0 (resp. > 0), are thus rewarded

(resp. penalized). The valuation of strategies with a
µ(n)
ig =

0 is instead left unchanged. We assume that agents neglect
their market impact [5].

Introducing the ‘preferences’ yi(n) = [pi1(n) −
pi2(n)]/2, and the quantities ξi = (ai1 − ai2)/2, ωi =
(ai1 + ai2)/2, and Ω = (1/

√
N)

∑N
i=1 ωi, (2) becomes

yi(n + 1) = yi(n)− ξ
µ(n)
i

Ωµ(n) +
1√
N

N∑
j=1

ξ
µ(n)
j sj(n)

 .

(3)
The Ising spin si(n) = sign[yi(n)] ∈ {−1, 1} is the relevant
dynamical variable: si(n) = 1 (resp. −1) indicates that
agent i has chosen strategy g = 1 (resp. 2) at round n.

The simplest dynamical approach to the analysis of the
stationary states of (3) is based on the ‘batch’ approxima-
tion, first employed in [17]. It consists in averaging (3)
over µ. The result is

yi(t + 1) = yi(t)− hi −
N∑
j=1

Jijsj(t) (4)

where t is a rescaled time, hi = (2/
√

N) Ω · ξi and Jij =
(2/N) ξi · ξj . This choice describes strictly speaking a
situation in which valuation updates are made once every
P steps or, equivalently, considering the average effect of
all possible µ’s. It is now well known, that the stationary
state of (4) is qualitatively and quantitatively very similar,
though not identical, to that of (3). The analysis of (4) is
however much simpler and more straightforward than that
of the original ‘on-line’ dynamics (3).

In the limit N → ∞, the Markovian multi-agent pro-
cess (4) can be studied à la De Dominicis [12] by intro-
ducing the generating functional of the dynamics, i.e.

Z[ψ] =
〈
ei

∑
it yi(t)ψi(t)

〉
paths

=
∫

p(y(0)) ei
∑

it ŷi(t)[yi(t+1)−yi(t)−θi(t)]+yi(t)ψi(t)

× ei
∑

it ŷi(t)[hi+
∑

j Jijsj(t)]
∏
it

[dyi(t)dŷi(t)/(2π)]

(5)
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and carrying out the average over the quenched disorder
(i.e. over the aig’s with probability distribution (1)). This
procedure ultimately results in a non-Markovian stochas-
tic equation for a single effective agent whose properties
are equivalent to those of the original N -agent system. In
our case, the effective agent is trading with frequency f .
As the calculation is standard, we will limit ourselves to
the final outcome, referring the reader to e.g. [17] for de-
tails of a closely related case. The effective-agent equation
turns out to be given by

y(t + 1) = y(t) +
∑
t′≤t

R(t, t′)s(t′) + θ(t) +
√

αf z(t) (6)

where R(t, t′) describes the retarded self-interaction,
whose precise form will be given below, θ(t) is an exter-
nal field added to probe the system against small pertur-
bations, and z(t) is a zero-average Gaussian noise with
correlations 〈z(t)z(t′)〉 = Λ(t, t′), with

Λ =
[
(I + G)−1(F + C)(I + GT )−1

]
. (7)

We used the following notation: I stands for the identity
matrix, with elements I(t, t′) = δtt′ ; F denotes the matrix
with elements F (t, t′) = f , with f the average trading
frequency; C and G are defined by their respective compo-
nents

C(t, t′) = 〈s(t)s(t′)〉∗ and G(t, t′) =
〈

∂s(t)
∂θ(t′)

〉
∗

(8)

where the 〈· · ·〉∗ average is intended over the effective pro-
cess (6) further averaged over f :

〈· · ·〉∗ =
∫

dffq(f)

×
∫ ∏

t

dy(t)dŷ(t)
2π

e−
αf
2

∑
tt′ ŷ(t)Λ(t,t′)ŷ(t′)

× (· · · ) ei
∑

t ŷ(t)[y(t+1)−y(t)−θ(t)−∑
t′ R(t,t′)s(t′)]

(9)

q(f) is the common probability density of the trading fre-
quencies. As usual, C(t, t′) and G(t, t′) can be identified
with the disorder-averaged correlation and response func-
tions of the multi-agent process:

C(t, t′) = lim
N→∞

1
N

∑
i

[
〈si(t)si(t′)〉paths

]
dis

(10)

G(t, t′) = lim
N→∞

1
N

∑
i

[
∂

∂θi(t′)
〈si(t)〉paths

]
dis

. (11)

For simplicity of notation, we set

C(t, t′) =
∫

fq(f)C(t, t′|f)df (12)

G(t, t′) =
∫

fq(f)G(t, t′|f)df. (13)

Finally, the retarded self-interaction kernel has the form

R = −αf(I + G)−1. (14)

For q(f) = δ(f −1) the equations for the standard ‘batch’
MG [17] are immediately recovered.

Making for the asymptotic behavior of C and G the
customary assumptions [22] of time-translation invari-
ance,

lim
t→∞C(t + τ, t) = C(τ) (15)

lim
t→∞G(t + τ, t) = G(τ) (16)

finite integrated response,

lim
t→∞

∑
t′≤t

G(t, t′) < ∞ (17)

and weak long-term memory

lim
t→∞G(t, t′) = 0 ∀t′ finite (18)

ergodic stationary states of the dynamics can be fully char-
acterized in terms of a few parameters. These are, in par-
ticular, the persistent autocorrelation

c = lim
τ→∞

1
τ

∑
t<τ

C(t) =
∫

fq(f)c(f)df (19)

with c(f) = limτ→∞(1/τ)
∑

t<τ C(t|f) the autocorrela-
tion of the effective trader (trading with frequency f),
and the susceptibility (or integrated response)

χ = lim
τ→∞

∑
t≤τ

G(t) =
∫

fq(f)χ(f)df (20)

where χ(f) = limτ→∞
∑

t≤τ G(t|f) is the effective
trader’s susceptibility.

Following [17], one can easily derive from (6) an equa-
tion for the long-time behavior of the rescaled variable
ỹ(t) = y(t)/t:

ỹ√
αf

= −γs + z, γ =
√

αf

1 + χ
(21)

where ỹ = limt→∞ ỹ(t), while s and z denote time-
averages of s(t) and z(t), respectively. As in the stan-
dard MG, part of the agents will ‘freeze’ at s = ±1 and
will end up using just one of their strategies (for these,
|y(t)| → ∞ asymptotically in such a way that ỹ remains
finite), whereas the remaining agents will keep flipping be-
tween their strategies (for these, y(t) remains asymptoti-
cally finite and ỹ is zero). It is easy to see that agents are
‘frozen’ for |z| > γ while they are ‘fickle’ (with s = z/γ)
for |z| < γ. The asymptotic values of the interesting quan-
tities can hence be immediately derived by separating the
contributions of frozen and fickle agents. For example, de-
noting by 〈 〉 an average over the Gaussian r.v. z with zero



146 The European Physical Journal B

mean and variance (from (7))
〈
z2

〉
= (f + c)/(1+χ)2 and

defining

φ(f) = 〈θ(|z| − γ)〉 = 1− erf
γ√

2 〈z2〉 (22)

i.e. the fraction of agents trading with frequency f that are
frozen (strictly speaking, the probability that the effective
agent is frozen), one has

c(f) ≡ 〈
s2

〉
= 〈θ(|z| − γ)〉+

〈
(z/γ)2θ(γ − |z|)〉

= φ(f) +
φ(f)
λ(f)2

− 1
λ(f)

√
2
π

e−λ(f)2/2 (23)

with φ(f) = 1− φ(f) = 〈θ(γ − |z|)〉 and

λ(f) =
γ√〈z2〉 =

√
αf

f + c
· (24)

Analogously, χ(f) can be calculated from the formula

γ
√

αf χ(f) = 〈θ(γ − |z|)〉 = φ(f) (25)

which is derived by noticing that the external field and
the noise term enter (6) in the same way, apart from the√

αf factor. The calculation of ∂s/∂z is then trivial and
leads to (25), which in turn gives

χ(f) =
1 + χ

αf
erf

λ(f)√
2
· (26)

Inserting (23) and (26) into (19) and (20) one gets
two equations for c and χ which must be solved self-
consistently. Solutions will depend on α and on the un-
derlying frequency distribution q(f). It is the purpose of
the next two sections to study these equations and the
corresponding solutions in two interesting cases.

3 Bimodal frequency distribution

As a start, let us consider the simplest case, where

q(f) = (1− q)δ(f − 1) + qδ(f − f0) (27)

with 0 ≤ q ≤ 1 and 0 ≤ f0 ≤ 1, describing a mixed
population formed by frequent traders, who buy or sell at
every round, and occasional traders, who instead have a
finite probability 1−f0 of taking no action. The population
fractions of the two types are (1− q) and q, respectively.

The total fraction of frozen agents is

φ = (1− q)φ(1) + qφ(f0)

= 1− erf
λ(1)√

2
+ q

[
erf

λ(1)√
2
− erf

λ(f0)√
2

]
(28)

where λ(f) is given by (24) with f = 1− q(1− f0). Equa-
tion (19) is given by

c = (1− q)c(1) + qf0c(f0) (29)

with c(f) given by (23), while, finally, the susceptibility
turns out to be expressed as

χ = (1− q)χ(1) + qf0χ(f0) (30)

with χ(f) given by (26).
Equations (29) and (30) must be solved self-

consistently and are valid as long as none of the assump-
tions (15–18) is violated. In the MG, ergodicity breaking
is related to the onset of anomalous response, i.e. to a di-
vergence of χ. Working out (30) explicitly, one finds the
relation

αχ

1 + χ
= (1− q) erf

λ(1)√
2

+ q erf
λ(f0)√

2
(31)

χ is evidently finite for large α. The critical values of the
control parameter where χ diverges are immediately ob-
tained as

αc(q, f0) = (1 − q) erf(x∗) + q erf
(
x∗

√
f0

)
(32)

where x∗ is the solution of the equation

2f − (1− q) erf(x) − qf0 erf(x
√

f0)

− 1− q

x
√

π
e−x

2 − q

x

√
f0

π
e−f0x

2
= 0 (33)

which has been obtained from (29) by defining x =
λ(1)/

√
2 and imposing α = αc. For α > αc, the system

is ergodic and admits a unique stationary state. At αc,
the integrated response diverges and anomalous response
sets in. For α < αc, finally, ergodicity is broken and the
long-time limit of macroscopic quantities depends on the
initial conditions of the dynamics. The limiting cases q = 0
and f0 = 1 reproduce, as they should, the results of the
standard MG, while the limit q = 1 brings us back to
the standard case after a trivial re-scaling. Notice that, as
usual in MGs, χ diverges when α equals the fraction 1−φ
of fickle traders.

Numerical solution of (33) and subsequent insertion of
the result into (32) leads to the (f0, α) phase diagrams
shown in Figure 1 for different values of q. For sufficiently
small f0, the critical point αc decreases as q increases,
signaling that the ergodic phase gets larger while the ef-
ficient phase shrinks. As f0 grows, αc tends instead to
the standard MG value 0.3374 . . . for any q, as was easily
predictable.

Solving instead (28), (29), and (30) one obtains the
behavior of the macroscopic order parameters and of the
fraction of frozen agents as a function of α upon varying
q and f0. These quantities give an idea of the interplay
between the two types of agents. For sakes of conciseness
and because we believe it is the most interesting instance,
we concentrate on the case where the trading frequency
of occasional traders is much lower than that of regulars,
that is we assume regulars and occasional traders oper-
ate on widely different time scales. We take in particu-
lar f0 = 0.05. Results for φ(f) are shown in Figure 2. It
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Fig. 1. Phase diagram of the multi-frequency MG with bi-
modal frequency distribution. The curves αc vs. f0 (trading
frequency of occasional traders) are shown for different values
of the fraction q of occasional traders. For α > αc the system
is ergodic. The horizontal dashed line at α ' 0.3374 marks the
position of the critical point of the standard MG and coincides
with the critical line in the case q = 0.
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Fig. 2. Fraction φ(f) of agents with trading frequency f that
are frozen for values of q as reported in the figures. The vertical
dashed lines give the positions of the critical points, below
which (17) is violated and the theory is no longer valid. The
continuous (resp. dashed) line represents φ(1) (resp. φ(0.05)).

is clear that occasional traders are more likely to freeze
than regular traders, as also argued in the static solu-
tion outlined in [3]. This tendency is robust with respect
to changes of q and f0. It is interesting to notice that a
larger fraction of occasional traders freeze when regulars
outnumber them.

In order to test our predictions, in particular for what
concerns the phase transition, and to understand further
the combined effects of regulars and irregulars on global
efficiency in this simple case, we can study the volatility
matrix, defined as [17]

Ξ =
1
2

Λ =
1
2

[
(I + G)−1(F + C)(I + GT )−1

]
(34)

Ξ has two important properties. First, the magnitude of
global fluctuations, i.e. σ2 =

〈
A2

〉
time

, which serves as a
measure of global efficiency (the smaller is σ2, the more
efficient is the allocation of resources, that is, the smaller
the amount of resource that is wasted), is given by

σ2 = lim
t→∞Ξ(t, t). (35)

Second, the quantity H = (1/P )
∑
µ=1,P 〈A|µ〉2time, where

〈A|ν〉time = lim
L→∞

1
L− Leq

∑
n=Leq,L

A(n)δµ(n),ν (36)

that quantifies the informational efficiency of the system
(when H = 0 the minority action is not predictable on the
basis of the state of the world µ(n) alone and the system
is efficient, in the sense that it does not create information
an external agent could exploit to have a gain) is roughly
given by the persistent part of Ξ. Both these properties can
be proved under general conditions, as done for instance
in [17].

H is easily seen from (34) to be given by

H =
f + c

2(1 + χ)2
(37)

and tends to f/2 for α → ∞. σ2 can instead be approxi-
mated with

σ2 =
f +

∫
fq(f)φ(f)df

2(1 + χ)2
+

1
2

[
f −

∫
fq(f)φ(f)df

]
(38)

and tends to f for α → ∞. The proof of (38), which re-
quires an approximate evaluation of (35), is a modification
of the standard case, reported in [17], and we will not re-
port it here. For the present model, we have obtained σ2

and H from numerical simulations (performed with flat or
unbiased initial conditions yi(0) = 0 for all i). The com-
parison with analytical predictions can be seen in Figure 3.
As in the standard MG, the ergodicity breaking transition
coincides with a transition between an informationally ef-
ficient phase with H = 0 (α < αc) and an informationally
inefficient one with H > 0 (α > αc). H vanishes at at αc,
where χ → ∞. The behavior of the re-scaled observables
H/f and σ2/f (see insets of Fig. 3) makes clear that as the
fraction of occasional traders increases, the system loses
both informational and global efficiency. At the same time,
σ2 decreases in vicinity of the critical point, signaling an
increased degree of cooperation.

4 Power-law frequency distribution

Let us now turn our attention to the case where

q(f) = κfκ−1, f =
κ

κ + 1
(39)

where the frequency distribution is scale-free (i.e., there is
no single characteristic time scale). The standard instance
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Fig. 3. Behavior of H and σ2 vs. α at fixed f0 = 0.05 for
q = 0, 0.2, 0.4, 0.6, 0.8 (continuous curves, top to bottom). The
vertical dashed lines mark the positions of the critical points.
In the non-ergodic regime α < αc the theory is no longer valid.
Markers denote the results of computer simulations of a system
of 256 agents averaged over 100 disorder samples. Insets: re-
scaled quantities H/f and σ2/f for q = 0, 0.4, 0.8 (scales are
as in the main figures).

is recovered in the limit κ →∞, in which q(f) → δ(f−1).
This problem was treated statically in [3], so we will limit
ourselves to calculating the phase diagram and discussing
its qualitative properties. The general dynamical solution
is now slightly more complicated than the bimodal case,
however it is still possible to write down closed equations
for the relevant parameters. The behavior of macroscopic
observables turns however out to be similar to the bimodal
case. Let us first notice that, since

1− φ = κ

∫ 1

0

fκ−1erf
λ(f)√

2
df (40)

and since, from (26),
αχ

1 + χ
= 1− φ (41)

we immediately obtain the expression for the critical line
signaling ergodicity breaking in the (κ, α) space, namely

αc(κ) = κ

∫ 1

0

fκ−1erf(x∗
√

f)df (42)

where again x∗ is the value of x = λ(1)/
√

2 that solves
the equation for c, namely

c = κ

∫
fκc(f)df (43)

at αc. One can see by a short calculation that in terms of
x and for α = αc, equation (42), equation (43) reads

2κ

1 + κ
− κ

∫ 1

0

fκ−1

[
f erf(x

√
f) +

√
f

x
√

π
e−fx

2
]

df = 0.

(44)
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Fig. 4. Phase diagram of the multi-frequency MG with power-
law frequency distribution. The curve αc vs. κ is shown. For
α > αc the system is ergodic and informationally inefficient.
The horizontal dashed line at α ' 0.3374 marks the position
of the critical point of the standard MG.

When κ →∞, the standard picture is recovered. Using a
more compact notation, (44) be re-cast as

κ

1 + κ
[2− erf(x)] +

F(κ, x; 3/2)
1 + κ

−F(κ, x; 1/2) = 0 (45)

where we introduced the shorthand

F(κ, x; a) =
κ

x2(κ+1)
√

π

[
Γ (κ + a)− Γ u(κ + a, x2)

]
(46)

with Γ (·) and Γ u(·, ·) the Euler Gamma function and the
upper incomplete Gamma function, respectively. Equa-
tion (45) can be solved numerically for x upon varying
κ. Subsequently, the corresponding value of αc can be cal-
culated from (42):

αc(κ) = erf(x∗)− (x∗)2

κ
F(κ, x∗; 1/2). (47)

The resulting phase diagram is shown in Figure 4. For
large κ, the standard MG picture is recovered, as expected.
As κ decreases, αc also decreases, proving that the frac-
tion of active agents is also getting smaller and smaller.
αc finally tends to zero when κ → 0. While this picture is
qualitatively identical to that derived in [3], there are cer-
tain numerical differences as in our solution αc(κ) seems
to approach the standard limit αc(∞) ' 0.3374 slightly
faster than in the replica solution. However a direct com-
parison could be misleading since the order parameters are
defined differently in the two cases. This point might de-
serve further investigation. The fraction φ of frozen agents
behaves similarly to what shown in Figure 2, in that agents
trading less frequently are more likely to be frozen, as also
discussed in [3]. Clearly, the formulas derived in the previ-
ous section for σ2 and H can be applied, mutatis mutandis,
also in this case.
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5 CMG with finite learning rates

We now add one layer of difficulty by introducing a learn-
ing rate in the individual agents’ dynamics of strategy se-
lection, as first done for the standard model in [23]. Up to
now, agents have strictly followed their best performing
strategy at each round, as encoded in the deterministic
rule

si(n) = sign[yi(n)]. (48)

Now we account for the possibility that at each time step
the value of si(n) is established by a probabilistic rule.
The simplest choice for the latter is1

Prob{si(n) = ±1} ∼ e±Γiyi(n) (49)

which turns (48) into

si(n|ζi(n), Γi) = sign[yi(n) + ζi(n)/Γi] (50)

where the ζi’s are i.i.d. Gaussian r.v.’s with probability
density p(ζ) = [1 − tanh2(ζ)]/2 (zero average, unit vari-
ance). The positive constants Γi can be interpreted as
‘learning rates’, upon varying which one interpolates be-
tween the deterministic rule (48), that is recovered for
Γi → ∞, and a fully randomized rule, corresponding to
Γi = 0. The dynamics of the standard model with finite
learning rates was tackled in [19], where the phrase ‘ad-
ditive decision noise’ was introduced to describe the situ-
ation of (50). Notice that this type of noise affects fickle
traders only, because for ‘frozen’ traders |yi(n)| → ∞,
hence it is to be expected that the critical points obtained
for different trading frequencies do not change. A more
complicated situation is that of ‘multiplicative decision
noise’, first introduced in [24], where instead of (50) one
has

si(n|ζi(n), Γi) = sign[yi(n)(1 + ζi(n)/Γi)] (51)

which corresponds to

Prob{si(n) = ±1} ∼ e±Γisign[yi(n)]. (52)

This choice clearly affects also frozen agents.
The dynamical theory of this case is a straightforward

modification of that constructed for the deterministic case.
In general, with s(n|ζi(n), Γi), the dynamics (4) becomes

yi(t + 1) = yi(t)− hi −
N∑
j=1

Jijsj(t|ζj(t), Γj). (53)

Again, one can write down its generating functional, tak-
ing into account the fact that this time the calculation
of one-step transition probabilities, the product of which
is used to compute averages over paths, requires carrying

1 We use for the learning rate the customary symbol Γ . The
reader is warned that it is different from the Γ function ap-
pearing in Section 4.

out an average over the ζi’s (we denote this operation by
[· · ·]ζ):

Z[ψ] =
〈
ei

∑
it yi(t)ψi(t)

〉
paths

=
∫

p(y(0)) ei
∑

it ŷi(t)[yi(t+1)−yi(t)+hi−θi(t)]+yi(t)ψi(t)

×
[
ei

∑
it ŷi(t)

∑
j Jijsj(t|ζj(t),Γj)

]
ζ

×
∏
it

[dyi(t)dŷi(t)/(2π)] . (54)

Again, averaging over the quenched disorder leads to a
non-Markovian process that now describes a single effec-
tive agent trading with frequency f and learning at rate Γ .
And again, we skip all formalities of the derivation of this
process and focus on its long-time properties. The analog
of (6) in this case is

y(t+1) = y(t)+
∑
t′≤t

R(t, t′)s(t′|ζ(t′), Γ )+ θ(t)+
√

αfz(t)

(55)
(7) and (14) are still formally valid, but the correlation
and response functions C(t, t′) and G(t, t′) are defined re-
spectively as

C(t, t′) = 〈s(t|ζ(t), Γ )s(t′|ζ(t′), Γ )〉∗ (56)

G(t, t′) =
∂

∂θ(t′)
〈s(t|ζ(t), Γ )〉∗ (57)

where the average 〈· · ·〉∗, formerly given by (9), involves
now also averages over ζ and Γ . In particular, if we denote
by w(Γ ) the probability density of Γ , we have

〈· · ·〉∗ =
∫ 1

0

dffq(f)
∫ ∞

0

dΓw(Γ )
∫ ∏

t

dy(t)dŷ(t)
2π

×
[
(· · · ) e−

αf
2

∑
tt′ ŷ(t)Λ(t,t′)ŷ(t′)

× ei
∑

t ŷ(t)[y(t+1)−y(t)−θ(t)−∑
t′ R(t,t′)s(t′|ζ(t′),Γ )]

]
ζ
. (58)

As before, C(t, t′) and G(t, t′) represent the disorder-
averaged correlation and response functions of the original
system.

Proceeding as done in Section 2 by assuming the valid-
ity of (15–18), one can derive an equation for the variable
ỹ = limt→∞ y(t)/t, which reads

ỹ√
αf

= −γm(Γ ) + z (59)

where all quantities have the same meaning as in (21)
except that now m(Γ ) is the time-average of s(t|ζ(t), Γ ).
This change presents no additional difficulty. In the next
section we will analyze the stationary states and the phase
diagrams resulting from (50) and (51) separately.
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6 Additive and multiplicative decision noises

In the case of (50), one immediately sees that the condi-
tions for an agent to be frozen or fickle are identical to
those given in Section 2, hence the picture emerging from
different trading frequencies (in particular the expressions
for χ, c and φ) is left unchanged since Γ can be inte-
grated out. In particular, the phase diagrams presented
in Sections 3 and 4 for bimodal and power-law frequency
distribution remain valid. Hence, as in the standard batch
MG, the introduction of additive noise does not affect the
macroscopic properties of the multi-frequency model in
the ergodic regime. (On the other hand, the introduc-
tion of Γ does affect the stationary states of the stan-
dard model in the non-ergodic regime, as first shown by
computer simulations in [23] and by analytical arguments
in [25].)

Finally, we turn to the case of multiplicative decision
noise (51). Following [19], it is convenient to switch to
the inverse learning rate T = 1/Γ and to introduce the
quantity

h(T ) =
∫

sign(1 + Tζ)p(ζ)dζ (60)

which has the obvious properties h(T ) ∈ [0, 1] with h(0) =
1 and h(∞) = 0. Using this, one concludes from (59)
with m(Γ ) ≡ m(T ) = sign[ỹ]h(T ) that frozen agents with
sign[ỹ] = ±1 have m(T ) = ±h(T ), respectively, and occur
for |z| > γh(T ), whereas fickle agents have m(T ) = z/γ
and occur for |z| < γh(T ).

In order to make contact with the quantities calcu-
lated in the deterministic decision-making case, we com-
pute the autocorrelation of the effective trader with trad-
ing frequency f , c(f), which can as usual be obtained by
separating the contributions of frozen and fickle agents,
this time performing an additional average over T . For
simplicity, one can pass from the variable T with proba-
bility density w̃(T ) to h, equation (60), with probability
density

ρ(h) =
∫ ∞

0

δ

[
h−

∫
sign(1 + Tζ)p(ζ)dζ

]
w̃(T )dT (61)

so that

c(f) =
∫

[
〈
θ(|z| − γh)h2

〉
+

〈
θ(γh− |z|)(z/γ)2

〉
] ρ(h)dh

(62)
where 〈· · ·〉 denotes an average over the Gaussian r.v. z
with zero average and variance

〈
z2

〉
= (f + c)/(1 + χ)2,

where
c =

∫
fq(f)c(f)df (63)

is the global persistent autocorrelation. The fraction of
frozen agents reads

φ =
∫

dfq(f)
∫

dhρ(h) 〈θ(|z| − γh)〉 (64)

where it should be kept in mind that γ depends on f
(γ =

√
αf/(1 + χ)).

An expression for the total susceptibility χ can be
found starting from (25) and averaging properly over f
and h:

αχ

1 + χ
= 1−

∫
dfq(f)

∫
dhρ(h) 〈θ(|z| − γh)〉 ≡ 1− φ

(65)
so that as usual χ diverges when the fraction of fickle
agents equals α. We have thus come to the following ex-
pression for the critical line:

αc[q(f), w(Γ )] =
∫

dfq(f)
∫

dhρ(h) erf (x∗h
√

f) (66)

where we have emphasized that αc now depends on the
trading frequency distribution q(f) and on the distribu-
tion of learning rates w(Γ ) (via w̃(T ) and ρ(h)). Again,
x∗ is the value of x = λ(1)/

√
2 that solves (63) at αc.

For the sake of brevity, we specialize the above the-
ory only to the simplest cases where both f and T have
binomial distributions:

q(f) = (1− q)δ(f − 1) + qδ(f − f0) (67)
w̃(T ) = (1− ε)δ(T ) + εδ(T − T0) (68)

with q, f0 and ε real numbers belonging to the interval
[0, 1]. This describes a mixed population of frequent and
occasional (trading frequency f0) traders, with either de-
terministic decision making or stochastic decision making
with learning rate Γ0 = 1/T0. Notice that trading fre-
quency and learning rate are treated as independent vari-
ables (this seems to the author a rather strong and possi-
bly unrealistic assumption). Under these hypotheses, one
has

ρ(h) = (1− ε)δ(h− 1) + εδ(h− h0), h0 = h(T0). (69)

Introducing again λ(f) =
√

αf

f+c
and setting

c(f, h) = h2

[
1− erf

λ(f)h√
2

]
+

1
λ(f)2

erf
λ(f)h√

2
− h

λ(f)

√
2
π

e−λ(f)2h2/2 (70)

one finds, for c,

c = (1− q)(1 − ε) c(1, 1) + (1− q)ε c(1, h0)
+ f0q(1− ε) c(f0, 1) + f0qε c(f0, h0) (71)

and for αc, which now depends on the population fractions
q and ε and on f0 and h0,

αc = (1− q)(1 − ε) erf(x∗) + (1− q)ε erf(x∗h0)

+ q(1 − ε) erf(x∗
√

f0) + qε erf(x∗h0

√
f0). (72)

When α = αc, (71) takes, in terms of x, a simple but rather
lengthy expression which we do not report. Ultimately, all
equations can be solved numerically. As already done in
Section 3, we show the phase diagram for the case where
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Fig. 5. Phase diagram of the multi-frequency MG with
stochastic decision-making, with bimodal distributions for fre-
quencies and learning rates, with parameter f0 = 0.05. Results
are shown for q = 0.25 (left panel) and q = 0.75 (right panel).
In each panel, continuous curves denote the critical lines for
multiplicative decision noise for ε = 0.2, 0.4, 0.6, 0.8, 1 (right to
left). The dashed vertical line marks the position of the critical
point for the CMG with deterministic decision-making, which
coincides with the critical line for the corresponding CMG with
additive decision noise.

regular and occasional traders operate on very different
time scales and again choose f0 = 0.05 (see Fig. 5). One
can clearly see that the phase structure of the MG with
multiplicative noise [19] is preserved, the main effect being
a shift of the position of the critical lines in the (α, Γ0)
space to lower values of α (signaling again a reduction of
the informationally efficient phase).

7 Summary and discussion

In summary, the MG with agents trading at different fre-
quencies and learning at different rates has been ana-
lyzed using generating-functional techniques. The dynam-
ical critical behavior of the model is not altered by the
introduction of multiple time scales for trading, but the
specific phase diagram turns out to depend on the details
of the underlying frequency and learning rate distribu-
tion. We have derived the phase structure for a system
of agents with deterministic decision-making when the
frequency distribution is a simple bimodal and when it
has a power-law form. For the case of stochastic decision-
making, i.e. finite learning rates, the phase diagram has
been computed explicitly for a double bimodal distribu-
tion of frequencies and learning rates, describing fast and
slow traders with a heterogeneous distribution of stochas-
ticity in their learning process. In accordance with [3], we
found that occasional traders display a stronger tendency
to freeze, namely to use just one of their strategies, than
regular traders, thus contributing and additional signal
to unfrozen players. To the latter, thus mostly to reg-
ular traders, is ultimately ascribable the building up of

fluctuations (via freezing) and thus the decrease of global
efficiency.

A qualitative understanding of some of the features of
the CMG, like the fact that αc decreases when the fraction
of occasional traders increases, might be achieved by in-
troducing an effective α, defined e.g. as the ratio between
P and the average number of traders that take part in the
game, to take directly into account the fact that not all
agents trade at every round. In this way, a CMG can be
seen as a standard MG played at αeff . On the other hand,
combining static and dynamical methods of statistical me-
chanics of disordered systems leads to a very satisfactory
quantitative understanding of the the macroscopic proper-
ties of MG-based market models. Unfortunately, the most
interesting non-ergodic regime α < αc is analytically ac-
cessible via dynamical techniques only by calculating the
dynamics explicitly (i.e. step by step) with a given initial
condition (although in some cases an approximate analysis
of the high- and low-volatility behaviors that may occur
in this regime is possible [17]). This is perhaps the main
limitation of the approach we employ in this paper. The
modified static approach proposed in [25] might however
allow to make some progress in calculating macroscopic
observables in the non-ergodic regime.

MGs are simple enough to hope they can serve as the
elementary building blocks of more complicated and re-
alistic agent-based market models, with different types of
agents that are heterogeneous in strategies, beliefs, learn-
ing rates, market-impact evaluation, etc., and where the
plethora of macroscopic phenomena observed in real sys-
tems could be analyzed and traced back to the individual
laws of motion. Present works concerning the macroscopic
properties of different versions of the MG should be seen
as the necessary preliminary work to develop a full un-
derstanding at later stages. Indeed, several directions are
open for further research. For example, it would be inter-
esting to relate Γ and f by letting agents with a smaller
learning rate trade more (or less) frequently. This could
also be done by assuming that Γ and f are not indepen-
dent qualities, as done in Section 6 of the present work,
but come with a joint probability density. Another wor-
thy extension could involve the introduction of (using the
terminology of [26]) ‘producers’, i.e. agents who have just
one strategy at their disposal. It is likely that they could
again affect the phase structure.

I am grateful to A. Cavagna, A.C.C. Coolen, I. Giardina, J.A.F.
Heimel, M. Marsili and G. Mosetti for encouragement and
many useful discussions and precious suggestions.
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